Устройство и принцип работы двигателя внутреннего сгорания

Предыстория

Многие века человечество пыталось облегчить свое нелегкое существование заменой мускульной силы человека на что-либо другое. Первыми были приручены животные, передвигавшие ненадежные деревянные повозки. Следующим шагом являлись попытки приручить энергию ветра и текущей воды, приводившей в движение тяжелые жернова мельниц и водяных насосов, помогавших поднимать воду на возвышенности, либо приводившие в движение кузнечные молоты. Все это неустанно двигало прогресс, только вот шаги были слишком маленькими, а аппетиты и потребности неуклонно росли.

Больше тысячи лет человечество зависело от ветра и капризов погоды. Пока наконец в Средние века не обратили внимание на силу пара и первая паровая машина была построена в XVII веке французским физиком Дени Папеном. Он вдохновлялся работой прототипа паровой турбины, созданный в I веке Героном Александрийским и описанный им в трактате «Пневматика» (Πνευματικά) под названием эолипил, что в переводе с греческого означает «шар бога ветров Эола»

История

На дворе середина 19 века, в мире безраздельно господствуют паровые двигатели, приводя в движение оборудование на заводах, первые грузовые поезда и даже корабли. Паровой двигатель постоянно модернизируется и уже являет собой образец инженерного искусства, достаточно мощный и стабильно работающий, хотя и не лишенный недостатков, связанных с большими габаритами и чрезвычайно низким тепловым кпд. В это же время для освещения городских улиц начали применять светильный газ, получаемый при пиролизе каменного угля или нефти, состоящий из смеси водорода (50 %), метана (34 %), угарного газа и других горючих газов. Опыты со свойствами нового топлива привели французского механика и изобретателя Этьена Ленуара к созданию первого работающего двигателя внутреннего сгорания в 1860 году. Двигатель Ленуара конструктивно копировал паровой двигатель, с той лишь разницей, что в цилиндр подавался не водяной пар, а светильный газ, смешанный с воздухом. Смесь взрывалась электрической искрой, газ и воздух распределялись коробчатым золотником, а прямолинейно-возвратное движение поршня превращалось во вращательное на валу двигателя при помощи кривошипа.

В те времена промышленность и производство отчаянно нуждались в небольшом двигателе, лишенном громоздкой топки и парового котла, что при отсутствии конкурентов даже у ненадежного и откровенно маломощного двигателя Ленуара был хоть и не долгий , но все же успех. Основным недостатком было отсутствие сжатия топливо — воздушной смеси в цилиндре, из -за чего кпд не превышал 4 процентов. В 1862 году Французский инженер Альфонсо Бо де Роша предлагает идею четырехтактного двигателя с предварительным сжатием рабочей смеси, однако воплотить сказанное в металле он не смог. И в 1876 году Николаус Август Отто, инженер-самоучка, в прошлом торговец, создает работающий прототип четырехтактного двигателя.

Четырехтактный цикл работы был назван в честь Отто и используется до наших дней в подавляющем большинстве ДВС.

ДВС, что это такое в машине?

Двигатель внутреннего сгорания, сокращенно ДВС, это такой тип мотора, тепловой машины, где химическая энергия углеводородного топлива, жидкого или газообразного, которое сгорает в рабочей камере сгорания, превращается в полезную работу. ДВС является «сердцем» автомобиля, поскольку именно в двигателе вырабатываемое тепло превращается в механическую энергию движения.

На картинке – работа двигателя внутреннего сгорания поршневого типа

Каждый, кто задается вопросом о ДВС, что это такое в машине, должен понимать, что современный технический прогресс создал большое разнообразие видов двигателей внутреннего сгорания. Ниже расскажем об этом наиболее подробно.

Базовые части двигателя

Чтобы хорошо понимать устройство двигателя автомобиля, важно разбираться, что из себя представляет блок, цилиндр, поршень, поршневые кольца и шатун.

Блок

Металлическую основу мотора, остов называют блоком. Это корпусная деталь. Именно к блоку крепятся механизмы и отдельные части мотора и его систем.
Иногда можно встретиться с термином «блок», иногда – с терминами «блок двигателя», «блок цилиндров». Всё это одно и тоже.
Блок двигателя берёт на себя серьёзные нагрузки. Поэтому контроль качества при его изготовлении должен быть предельно высок. Огромное внимание уделяется как материалу, так и уровню точности изготовления детали. Для производства используются высокоточные станки.
Раньше блоки изготавливали из перлитного чугуна с легирующими добавками. Популярность чугуна при изготовлении блоков легко объяснима тем, что материал износостоек, стабилен по своим свойствам, малочувствителен к перегреву, адаптивен к ремонту. Сейчас некоторые производители также выпускают блоки из алюминиевого, магниевого сплава. В этом случае есть выигрыш, связанный с весом мотора. Это очень актуально для блоков моторов спорткаров.

Цилиндр

Рядом с понятием «блок» стоит понятие «цилиндр». Под цилиндром подразумевается цилиндрическое отверстие, высверленное в блоке.  То есть это рабочая камера объёмного вытеснения.
Уплотнение верхней стороны цилиндра обеспечивает головка. Именно в ней находятся:

  • Клапаны. Обеспечивают (в процессе открытия-закрытия) поступление в цилиндр воздуха, топливовоздушной смеси. Также среди функций клапанов обеспечивают очистку камеры сгорания цилиндра от отработавших (выхлопных) газов. Закрытие клапанов и удержание их в таком состоянии обеспечивают клапанные пружины.
  • Распредвалы (элементы привода клапанов). От них зависит то, как открываются клапаны, сколько времени они находятся в открытом состоянии
  • Механизмы привода клапанов. Функция идентична. И, как видно, из названия – это привод клапанов. Но сами механизмы могут быть разными. Всё зависит от мотора: например, бензиновый, дизельный.

Цилиндр играет роль направляющего для поршня.

цилиндры.jpg

Коленчатый вал

Коленчатый вал – это важная составляющая кривошипно-шатунного механизма. Кривошип коленчатого вала создает возвратно-поступательное движение поршня через шатун (подвижный элемент), то есть возвратно-поступательное движение поршня превращается в крутящий момент. Физически коленвал расположен в нижней части двигателя. Снизу коленвал прикрыт картером – самой внушительной неподвижной и полой частью двигателя, закреплённой на блоке сбоку. Визуально картер напоминает поддон.
Конструкция коленчатого вала состоит из несколько шеек (коренных и шатунных). Они соединены щеками, соединенных между собой щеками. Место перехода от шейки к щеке всегда является самым нагруженным у коленвала.
На коленчатый вал приходятся переменные нагрузки от сил давления газов.
Для того, чтобы не возникало осевых перемещений коленчатого вала, используется упорный подшипник скольжения. Он устанавливается на одной из шеек (средней или крайней).

Поршень, поршневые кольца и шатун

Цилиндрическая деталь или совокупность деталей, которая преобразует энергию горения топливо в механическую энергию, называется поршнем.
В проточках на боковой поверхности поршня вставлены поршневые кольца. Благодаря им между поршнем и стенкой цилиндра создаётся уплотнение. Задача поршневых колец заключается в создании барьера для перетекания из камеры сгорания в картер коленчатого вала газов.
Среди задач поршня:

  • Оказание силового воздействия на шатун.
  • Отвод тепла от камеры сгорания.
  • Герметизация камеры сгорания.

Подвижное соединение между поршнем и коленчатым валом обеспечивает шатун. Именно шатун передаёт силу движущегося поршня к вращающемуся коленчатому валу.
шатун

Несколько важных терминов, касающихся устройства двигателя автомобиля

двигатель.png

Камера сгорания –замкнутое пространство, где осуществляется воспламенение и горение топливовоздушной смеси. Сверху камера сгорания ограничена нижней поверхностью головки цилиндра, сбоку – стенками цилиндра, снизу –днищем поршня.
Толкатели клапанов, подъёмники –промежуточное звено, необходимое для передачи движения от распределительного вала к остальным частям механизма привода клапанов.
Коромысла (рокеры). Детали двигателя, функции которых заключаются в передаче движения от распределительного вала к клапанам.
Маховик. Деталь, ответственная за обеспечение равномерного вращения коленчатого вала. На цилиндрической устанавливается зубчатый венец. Он помогает провести пуск электростартера.
На схеме представлено расположение основных частей двигателя при рассмотрении его со стороны его задней части. На фланце коленчатого вала видны отверстия под болты, с помощью которых к фланцу крепится маховик с зубчатым венцом, или платина привода гидравлического трансформатора автоматической трансмиссии.

Виды ДВС

В зависимости от типа рабочего механизма все разнообразие ДВС можно разделить на несколько категорий, встречаются:

  • Газотурбинные;
  • Роторные;
  • Поршневые.

Именно за счет этих механизмов в камере сгорания может осуществляться процесс превращения тепловой энергии в движущую силу, собственно за счет поршня, ротора или турбины. Давайте рассмотрим принцип работы каждого типа ДВС более подробно.

Роторный ДВС

Принцип работы роторного двигателя основан на постоянном вращении ротора с переменной тактов работы. Роторный двигатель имеет всего лишь один поршень, который одновременно и является ротором. Он вращается в цилиндре специальной формы, приспособленной для него.

Ротор в свою очередь соединен с валом и зубчатой передачей со стартером. Его лопасти при вращении ротора попеременно перекрывают камеру, где и сгорает топливо. Такой мотор имеет сбалансированную конструкцию, небольшой вес и компактный размер. Однако топлива подобный агрегат потребляет на 100 километров пути гораздо больше, чем поршневой двигатель.

Роторный двигатель в разное время ставился на некоторые модели «Мерседес», «Шевроле» и «Ситроен». Также в прошлом двигатель такой конструкции устанавливали и на моделях «ВАЗ-2108″ и » ВАЗ-2109″. В настоящее время роторный мотор можно увидеть на модели RX8 концерна «Мазда». Однако с 2012 года ее производство прекращено. На данный момент концерн готовит к выпуску новую модель спорткара «Мазда RX-9».

Газотурбинные

Принцип работы ДВС тоже довольно прост:

  • на ротор насажены специальные лопатки клиновидной формы;
  • тепловая энергия заставляет его двигаться;
  • за счет этого в движение приходит вал турбины;
  • энергия преобразуется в механическую работу.

Используются подобные модели довольно редко.

Поршневой двигатель

В ДВС с поршневым принципом работы камера сгорания находится внутри цилиндра, где сам поршень выполняет функцию подвижной части, которая в зависимости от этапа сгорания топлива и такта работы мотора поднимается или опускается. В свою очередь в двигателе автомобиля может находиться определенное число цилиндров. Их поршни через передаточный механизм приводят в движение коленвал, который и преобразует возвратно-поступательное движение поршня во вращательное, что в конечном итоге и позволяет колесам автомобиля вращаться.

ДВС, что это такое в машине можно понять, рассмотрев его на данной картинке

Поршневой двигатель самый распространенный в автостроении из-за своих положительных характеристик:

  • Высокой мощности и надежности, в сравнении с другими типами ДВС;
  • Лучшей экономичности;
  • А также благодаря своим достаточ-но компактным размерам.

Бензиновые

Бензиновые карбюраторные

Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае — гомогенность.

Бензиновые инжекторные

Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ), управляющим электрическими бензиновыми вентилями.

Дизельные, с воспламенением от сжатия

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания. Т. к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Дизельное топливо является более дешевым, нежели бензин. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжелых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счет пневматической схемы с запасом сжатого воздуха, либо в случае с инверторными генераторными установками, от присоединенной электромашины, которая при обычной эксплуатации выполняет роль генератора.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера-Сабатэ со смешанным подводом теплоты.

Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряженностью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Комбинированный двигатель внутреннего сгорания

  •  двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). Большой вклад в теорию комбинированных двигателей внес советский инженер, профессор А. Н. Шелест.

Системы двигателя

Надёжная и долговременная работа двигателя внутреннего сгорания невозможна без питания, смазки, охлаждения. Кроме того, нужно обеспечить первый запуск коленвала и каждый раз воспламенять рабочую смесь в цилиндрах. Для этих целей разработаны следующие системы двигателя:

  • смазки;
  • охлаждения;
  • питания;
  • запуска;
  • зажигания;
  • впрыска;
  • управления.

Если раньше системы были механические, сейчас в них появляется больше электроники. Электронное управление делает работу мотора высокоэффективной, экономичной и надёжной. Системы становятся компактными, но требуют качественного и регулярного обслуживания.

ДВС

ГРМ — газораспределительный механизм

Устройство двигателя внутреннего сгорания включает в себя ГРМ. Его функция — вовремя подать в определённые цилиндры рабочую смесь, а также выпустить из этих цилиндров продукты горения. Работу механизма определяют последовательность работы цилиндров и фазы газораспределения.

Устройство ГРМ

Для функционирования ГРМ необходимы минимум 1 впускной и 1 выпускной клапан на каждый цилиндр. Диаметр тарелки впускного клапана обычно больше, чем у выпускного, что позволяет улучшить наполняемость цилиндра и увеличить рабочие показатели ДВС. Открытие и закрытие клапанов регулирует кулачковый распределительный вал. Сам вал приводится цепью или ремнём от коленвала.

Конструктивно привод клапанов делится на 4 вида:

  • OHV — распредвал расположен в блоке цилиндров, а управление клапанами происходит через дополнительные толкатели и штанги;
  • ОНС — распредвал размещён в головке блока, привод клапанов осуществляется за счёт рычажных толкателей;
  • DОНС — схема расположения с двумя распредвалами в головке блока. В этом случае один вал используется для впускных, а другой для выпускных клапанов.

Варианты привода клапанов

Фазы газораспределения — это моменты открытия и закрытия клапанов, выраженные в углах поворота коленвала. Правильно подобранные фазы обеспечивают лучшее наполнение и очистку цилиндров. Если в устройство двигателя включить механизм управления фазами VVT, это позволит получить максимальную мощность при высокой частоте вращения коленвала и экономить ресурсы на малых оборотах.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон);
  • Насос подачи масла;
  • Масляный фильтр с редукционным клапаном;
  • Маслопроводы;
  • Масляный щуп (индикатор уровня масла);
  • Указатель давления в системе;
  • Маслоналивная горловина.

Система охлаждения

Температура в камере сгорания в момент воспламенения доходит до 2500℃. Перегрев цилиндров, поршней, головки блока и других деталей приводит к потере мощности, тепловому расширению, выгоранию масла, обгоранию клапанов и заклиниванию двигателя. Для охлаждения конструкции разработана система, которая принудительно отводит тепло потоком воздуха или жидкости.

Жидкостная система охлаждения

Воздушная система охлаждения ДВС применяется на мопедах, мотоциклах и газонокосилках. Жидкостная система более сложная и шумная, но обеспечивает равномерный и эффективный отвод тепла. В качестве теплоносителя используются антифризы — жидкости с низкой температурой замерзания.

Для отвода тепла от блока цилиндров и головки предусмотрена рубашка охлаждения — канал для прохождения жидкости. Рубашка соединяется патрубками с радиатором, который забирает тепло от жидкости и выбрасывает его в воздух. За радиатором располагают вентилятор, который увеличивает скорость прохождения воздуха. Вентилятор приводится от ременной передачи коленвала или электропривода. Часто вентилятор оснащают вязкостной или гидравлической муфтой.

Во время работы двигателя охлаждающая жидкость циркулирует от насоса, который приводится от коленвала или электродвигателя. Чтобы система обеспечивала оптимальный температурный режим, в контур охлаждения встраивают термостат с управляемым теплочувствительным элементом. Термостат может быть соединён с электронным блоком управления.

Система подачи топлива

Система подачи топлива в двигателях внутреннего сгорания может быть карбюраторной или инжекторной. Наиболее распространённой является инжекторная система питания с распределённым впрыском. Она состоит из следующих подсистем:

  • подачи и очистки топлива;
  • подачи и очистки воздуха;
  • улавливания и сжигания паров бензина;
  • выпуска и дожигания отработанных газов;
  • электронной части с набором датчиков.

инжекторная система питания с распределённым впрыском

Во время включения ДВС запускается электробензонасос, который закачивает топливо из бака. Бензин проходит через топливный фильтр к рампе с форсунками. На корпусе форсунки находятся электрические контакты, которые регулируют количество топлива, впрыскиваемого в цилиндр.

За количеств воздуха, поступающего в цилиндры ДВС, отвечает дроссельная заслонка. Она работает от механического троска или электропривода.  Регулировку оборотов на холостом ходу осуществляет шаговый электродвигатель или непосредственно компьютер. Для корректной работы системы впрыска электронный блок получает информацию с датчиков массового расхода воздуха, температуры охлаждающей жидкости, положения и частоты вращения коленвала и др.

Помимо распределённого впрыска существуют системы непосредственного впрыска. Однако, они более сложные и дорогие. Специалистам компании Mitsubishi удалось разработать сбалансированную систему, которая улучшила топливную экономичность и повысила мощность мотора. Это объясняется возможностью двигателя работать на обеднённых смесях и повышением степени сжатия до с 10 до 12,5.

Впервые система непосредственного впрыска появилась в моторах 1,8 GDI на Mitsubishi Galant в 1996 году. Сейчас подобные двигатели внутреннего сгорания встречаются в машинах Peugeot-Citroen, Renault, Toyota.

Системы питания дизельных ДВС отличаются от бензиновых. Существуют две схемы подачи дизельного топлива: с разделённой камерой сгорания и непосредственный впрыск. Первый вариант работает мягче и тише, но распространение получил второй вариант с лучшей топливной экономичностью в 20 %.

Система непосредственного впрыска

Дизельное топливо поступает из бака в нагнетательный трубопровод, затем через подкачивающий насос в топливный фильтр. После очистки дизель попадает в топливный насос высокого давления ТНВД, который распределяет топливо по форсункам.

Альтернативой системе с ТНВД является система питания Common Rail от Bosch. Особенность системы — установка аккумуляторного узла со штуцерами для подсоединения форсунок. Топливо в узле находится постоянно под высоким давлением, что позволяет подавать в цилиндр небольшие и точно отмеренные порции.

Выхлопная система

Выхлопная система влияет на мощность ДВС, расход топлива и количество выбросов в атмосферу. Для уменьшения содержания вредных веществ в отработанных газах применяется каталитический нейтрализатор.  Он состоит из восстановительного и двух окислительных катализаторов, которые превращают углеводороды в водяной пар, а окиси углерода — в углекислый газ. Нейтрализатор устанавливают максимально близко к выпускному коллектору.

Выхлопная система

Нейтрализатор работает эффективнее, если двигатель внутреннего сгорания работает на смеси из воздуха и топлива в соотношении 14,7:1. Количество воздуха в отработанных газах отслеживает датчик лямбда-зонд. Уровень вредных окисей азота снижают с помощью системы рециркуляции путём забора части газов из выпускной системы для подачи его во впуск.

Характеристики ДВС

Потребительские качества двигателя (принимая за образец классический поршневой или комбинированный двигатель, отдающий крутящий момент) можно охарактеризовать следующими показателями:

  1. Массовые показатели, в кг на литр рабочего объёма (обычно от 30 до 80) — удельная масса, и в кВт/кг — удельная мощность. Они важнее для транспортных, особенно для авиационных, двигателей.
  2. Удельный расход топлива, г/л. с.*час (г/кВт*ч), или для конкретных видов топлив с разной плотностью и агрегатным состоянием, л/кВт*ч, м3/кВт*ч.
  3. Ресурс в часах (моточасах). Некоторые применения ДВС не требуют большого ресурса (пусковые ДВС, двигатели ПТУР, торпед и дронов), и потому в их конструкции могут отсутствовать, например, фильтры для масла и воздуха. Ресурс таких специфических ДВС, как огнестрельное оружие, исчисляют в количестве выстрелов до смены ствола. Наиболее долговечные двигатели должны иметь ресурс в десятки и сотни тысяч часов (судовые и мощные стационарные), соответствующий ресурсу судна или силовой установки.
  4. Экологические характеристики (как самостоятельные, так и в составе транспортного средства), определяющие возможность его эксплуатации.
  5. Транспортные характеристики, определяющие кривую крутящего момента в зависимости от числа оборотов. При работе двигателя по винтовой характеристике, обычно без трансмиссии, специальная корректировка транспортной характеристики не требуется, но в автомобилях и тракторах хорошая транспортная характеристика (высокий запас крутящего момента, тихоходная настройка) позволяют уменьшить число передач в трансмиссии и облегчить управление.
  6. Шумность двигателя, зачастую определяемая его применением в люксовых моделях автомобилей или подводных лодках. Для снижения шумности часто снижают жёсткость подвески двигателя, усложняют схемы выпуска газов (например, выпуск газов через винт в подвесных моторах), а также капотируют.

Скоростные характеристики

Внешняя скоростная характеристика 2,7-литрового шестицилиндрового двигателя Porsche Boxster

ДВС, отдающие мощность на выходной вал, обычно характеризуются кривыми крутящего момента и мощности в зависимости от частоты вращения вала (от минимально устойчивых оборотов холостого хода до максимально возможных, при которых ДВС может длительно работать без поломок)  . Дополнительно к двум этим кривым может быть представлена кривая удельного расхода топлива  . По результатам анализа таких кривых определяется коэффициент запаса крутящего момента (он же коэффициент приспособляемости), и другие показатели, влияющие на конструкцию трансмиссии  .

Скоростные характеристики ДВС с количественным регулированием: 1- внешняя, 2 и 3 — частичные при различных положениях дроссельной заслонки. При количественном регулировании максимум крутящего момента при снижении мощности смещается в область низких оборотов.

Для потребителей производители предоставляют внешние скоростные характеристики с нетто-мощностью ISO-1585, согласно региональному стандарту измерения мощности ДВС, который зависит от температуры, давления, влажности воздуха, применяемого топлива и наличия отбора мощности на установленные агрегаты. Двигатели производителей США обычно испытывают по другому стандарту (SAE). Внешней эту характеристику называют потому, что линии мощности и крутящего момента проходят выше частичных скоростных характеристик, и нельзя получить мощность выше этой кривой манипуляциями с органами подачи топлива.

В публикациях 1980-х годов и более ранних приводятся скоростные характеристики, базирующиеся на измерении мощности брутто (кривая крутящего момента, соответственно, также располагается на графике выше).

Кроме полных, в расчётах транспортных трансмиссий активно используются частичные скоростные характеристики — эффективные показатели двигателя при промежуточных положениях регулятора подачи топлива (или дроссельной заслонки в случае бензиновых двигателей)  . Для транспортных средств с гребными винтами на таких характеристиках приводят винтовые характеристики при различных положениях шага винта с регулируемым шагом  .

Существуют и другие характеристики, не публикуемые для потребителей, например, с кривыми индикаторной мощности, индикаторного расхода топлива и индикаторного крутящего момента и используемые при расчёте ДВС, а также абсолютная скоростная характеристика, показывающая максимально возможную мощность данного двигателя, которую можно получить при подаче большего количества топлива, чем на номинальном режиме. Для дизельных двигателей строится также линия дымления, работа за которой не допускается  .

Работа на абсолютной характеристике практически (кроме пуска ДВС) не производится, поскольку при этом снижается экономичность и экологичность двигателя, сокращается ресурс (особенно для дизельных двигателей, у которых работа за линией дымления сокращает ресурс двигателя до считанных часов)  .

Скоростные характеристики ДВС с качественным регулированием (обычно дизели): 1 — абсолютная, 2 — внешняя, 3 и 4 — частичные при различной цикловой подаче. При качественном регулировании (нет дросселя) максимум крутящего момента остаётся примерно в том же районе частот вращения при разной мощности.

Характерное отличие скоростных характеристик дизельного и искрового двигателя (частичные скоростные характеристики второго резко снижаются в области больших оборотов) вызвано принципиальным различием способа регулирования мощности: в газовых и бензиновых двигателях подача воздуха или горючей смеси ограничивается дроссельной заслонкой (количественное регулирование), и при увеличении дросселирования наполнение цилиндра резко уменьшается с ростом оборотов, в дизельных же двигателях количество воздуха остаётся прежним (качественное регулирование), и крутящий момент снижается примерно пропорционально подаче топлива за цикл  .

Это влечёт за собой два важных следствия: первое, бензиновые двигатели имеют более высокий коэффициент приспособляемости, и потому автомобиль, оснащённый таким двигателем, может иметь меньшее число передач в коробке скоростей; второе, дизельные двигатели значительно меньше снижают свой КПД при работе на частичных скоростных характеристиках  . В связи с этим, поздние модели двигателей с впрыском топлива в цилиндры (FSI) на неполных нагрузках дросселируют меньше, при этом в цилиндрах происходит так называемое послойное смесеобразование (очаг сгорания вокруг факела топлива в центре окружён воздухом). Одновременно с ростом КПД такой процесс сгорания снижает выбросы  . Таким образом, эти двигатели будут иметь характеристики, промежуточные между упомянутыми.

С другой стороны, в последние десятилетия стали активно применять дросселирование дизельных двигателей, вводимое с целью улучшения транспортной характеристики. Наибольший эффект дросселирование даёт на дизелях, снабжённых турбонаддувом  .

Ресурс ДВС

В значительной степени определяется конструкцией и степенью форсировки. В последнее время, в связи с ростом экологических требований, предельно допустимый ресурс двигателя ограничен не только его снижением мощности и расхода топлива, но и ростом вредных выбросов.

Для поршневых и роторных ДВС ресурс в значительной степени обусловлен износом уплотнений поршня (поршневые кольца) или ротора (торцевые уплотнения), для газотурбинных и реактивных — потерей прочностных качеств материалом и деформацией лопаток. Во всех случаях происходит постепенный износ подшипников и уплотнений валов, а в связи с зависимостью основного механизма двигателя от вспомогательных агрегатов ресурс ограничен отказом первого из них.

Обычно двигатели имеют интервалы обслуживания, связанные с промывкой или сменой фильтров, также масла, свечей зажигания, зубчатых ремней или цепей. Смотря по конструкции, двигатели нуждаются в различных типах проверочных и регулировочных работ, гарантирующих следующий период безотказной работы мотора. Однако даже при соблюдении всех правил обслуживания, двигатель постепенно изнашивается. Кроме заданного заводом ресурса (обусловленного твёрдостью и притиркой изнашиваемых деталей и тепловым режимом), при прочих равных условиях двигатель значительно дольше служит на частичных мощностных режимах.

Ремонт ДВС в автомобиле, стоимость

Из чего состоит, и что такое ДВС в автомобиле мы разобрались, теперь немного расскажем о ремонте ДВС. Так как ДВС является сложным инженерным устройство и состоит из множества систем, которые должны слаженно работать, выход из строя или обшивка одной системы двигателя ведет к неровной работе системы в целом или к полной остановке мотора — поломке. Например, вышла из строя форсунка распыления топливной смеси в одном цилиндре, следовательно, в одном цилиндре нет детонации и что происходит с мотором в целом?

Мотор или как его еще называют ДВС, теряет мощность, и, если мотор 4 цилиндровый будет работать с рывками и провалами. С большой вероятностью будет давать сильную вибрацию на кузов, из-за ассиметричного зажигания. На помощь приходит диагностика и ремонт ДВС, автомобиль подключают к компьютеру и считывают ошибки по работе мотора. По набору ошибок, мастера поймут в чем причина поломки и поменяют форсунку.

Стоимость ремонта ДВС в автомобиле варьируется от модификации самого мотора и вида неисправности. Бывает, такое, что сама машины дешевая, а ремонт мотора дорогой, из-за неудобного расположения различных узлов. Бывает наоборот. Лучше всего не запускать проблемы по ДВС до ремонта. Нужно вовремя вменять масло, фильтры. Ели появляется как-либо проблема, нужно сразу вытиснять в чем причина и решать вопрос, пока мелкая проблема не переросла в полномасштабный ремонт.

Источники

  • https://zen.yandex.ru/media/wbruns/istoriia-poiavleniia-dvs-6122430e84456f3ce53b6011
  • https://auto-pos.ru/181-dvs-chto-eto-takoe-v-mashine.html
  • https://pro-sensys.com/info/articles/obzornye-stati/ustroystvo-dvigatelya-avtomobilya/
  • https://dekabrina.ru/obuchenie/dvs.html
  • https://zen.yandex.ru/media/the_auto/dvigatel-vnutrennego-sgoraniiadvs-princip-raboty-ustroistvo-i-istoriia-poiavleniia-602570195a38290c15f667c3
  • https://dic.academic.ru/dic.nsf/ruwiki/5132
  • https://dvsoff.ru/tip/dvigatel-vnutrennego-sgoraniya
  • https://principraboty.ru/princip-raboty-dvs/
  • https://wiki2.org/ru/%D0%94%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C_%D0%B2%D0%BD%D1%83%D1%82%D1%80%D0%B5%D0%BD%D0%BD%D0%B5%D0%B3%D0%BE_%D1%81%D0%B3%D0%BE%D1%80%D0%B0%D0%BD%D0%B8%D1%8F
  • https://vigodnozap.ru/chto-takoe-dvs-v-avtomobile/

[свернуть]
Adblock
detector