Роторный двигатель: принцип работы и устройство

Что такое роторный двигатель

История роторных двигателей началась в 1957 году, когда немецкими инженерами Феликсом Ванкелем и Вальтером Фройде был продемонстрирован первый работоспособный образец такого силового агрегата. Поначалу новинкой очень серьезно заинтересовались многие ведущие мировые производители автомобилей (в частности, Mercedes-Benz, General Motors, Citroen), однако в итоге только японская Mazda решилась на то, чтобы освоить выпуск роторных двигателей крупными сериями и не отказываться от них в течение весьма длительного времени.

Кстати говоря, даже отечественный ВАЗ в течение целого ряда лет выпускал ограниченными сериями «Жигули» с роторными силовыми агрегатами. «Обычным» покупателям они не поставлялись, а отправлялись эти машины в автопарки КГБ и, в совсем небольших количествах, МВД СССР.

Принцип работы роторного двигателя, также как и обычного поршневого двигателя, базируется на преобразовании энергии сгорания в энергию вращения, однако это преобразование осуществляется немного другим способом. В роторном двигателе вращательное движение совершает непосредственно главный рабочий его элемент — ротор. Именно в этом состоит важнейшее отличие роторного двигателя внутреннего сгорания от поршневого ДВС, в котором главными подвижными рабочими элементами являются поршни, совершающие не вращательное, а возвратно-поступательное движение.

Таким образом, в роторных двигателях в силу их конструкции полностью исключаются достаточно сложные по своей конструкции и требующие периодического обслуживания кривошипно-шатунные механизмы, преобразующие возвратно-поступательное движение во вращательное движение коленчатого вала.

Кто изобрел

Концепцию работоспособного роторно–поршневого двигателя предложил немецкий инженер и изобретатель Вальтер Фройде, являвшийся сотрудником компании NSU (затем фирма вошла в состав марки Audi). Одновременно похожий проект разработал и Феликс Ванкель, также трудившийся в NSU. В конструкции установок использовался треугольный ротор с профилем Рело, позволивший избежать вибраций от движения поршней традиционного ДВС. Ротор вращается в цилиндре статора со специальным профилем, обеспечивающим чередование тактов и защиту от выхода газов.

Внешний вид

Оригинальная схема роторно–поршневого мотора позволила отказаться от массивного блока цилиндров, вместо которого используется цилиндрический картер с двойной стенкой для циркуляции охлаждающей жидкости. Двигатель Ванкеля уже и короче поршневого движка, что позволяет снизить габариты моторного отсека. Мотор работает на смеси, приготовляемой в карбюраторе или при помощи форсунок для непосредственного впрыска бензина. На валу устанавливается шкив для привода навесных агрегатов и муфта сцепления для передачи мощности к коробке скоростей.

Конструктивные особенности роторного мотора

Роторный двигатель устройство

Хотя роторный мотор конструктивно имеет меньше деталей, его принцип работы несколько сложнее. Также в устройстве роторного двигателя применены элементы из разных материалов (чугун, алюминий). Еще имеются особые покрытия (например, хром).

Статоры (корпусы роторов) имеют металлические вставки из особой стали, интегрированные в алюминиевый корпус. На деле, статор больше похож на цилиндр с хонингованной гильзой. В свою очередь, боковые корпусы выполнены из чугуна, в них сделаны впускные и выпускные окна. На крайних статорах крепятся шестерни.

Сам ротор является поршнем и шатуном, сделан из облегченного чугуна. Н каждой стороне ротора есть камера сгорания и уплотнители для сохранения герметичности. Во внутренней части ротора стоит роторный подшипник, напоминающий вкладыш коленвала.

  • На обычном поршне традиционного ДВС поршень имеет 3 кольца – пара компрессионных и маслосъемное кольцо. В свою очередь, ротор имеет апексы (уплотнители вершин ротора). Апексы играют роль компрессионных колец. Указанные элементы прижимаются к стенке статора пружиной, а также они прижаты за счет центробежной силы.

Функцию второго пояса компрессионных колец выполняют боковые, а также угловые уплотнения. Они тоже прижимаются пружинами. Эти боковые уплотнители выполнены из металлокерамики, в то же время  угловые уплотнители чугунные. Дополнительно имеются  уплотнения для изоляции, чтобы отработавшие газы не попадали во впускные окна через зазоры, которые образуются между самим ротором и боковым корпусом соответственно.

Еще с двух сторон ротора имеются особые масляные уплотнения (по аналогии с маслосъемными кольцами), которые удерживают масло, поступающее во внутреннюю полость ротора для охлаждения.

Кстати, система смазки роторного ДВС сложная, включает в себя радиатор охлаждения масла, а также целую группу из нескольких типов масляных форсунок. Форсунки интегрированы в эксцентриковый вал для охлаждения роторов, также они установлены в статоры.

Еще масло подается и в рабочую полость, смешиваясь с горючей смесью и выгорая вместе с топливным зарядом. На деле, роторный мотор весьма требователен к качеству масла. Если заливать неподходящую смазку, агрегат коксуется, возникает детонация и т.д.

Также добавим, что система питания простая, есть несколько форсунок (пара форсунок перед впускными окнами, а также во впускном коллекторе). Что касается зажигания, использованы две свечи на один ротор. Это сделано по причине того, что камеры сгорания сами по себе получились длинными. В результате, чтобы добиться равномерного и полноценного сгорания смеси,  используют две свечи, причем их электроды отличаются. При замене свечей важно обращать на это внимание.

Устройство роторного двигателя

Устройство роторного двигателя
Система зажигания и система впрыска топлива в роторных двигателях схожа с аналогичными, используемыми в двигателях поршневых, однако строение этих ДВС совершенно различно. Основными конструктивными элементами роторного двигателя являются:

  • Ротор;
  • Статор (корпус);
  • Выходной вал.

Как уже были сказано выше, ротор располагается внутри статора (корпуса) и имеет три выпуклых стороны. Каждая из них, по сути дела, играет роль поршня и имеет углубление, необходимое для того, чтобы повысить скорость вращения. На каждой из сторон ротора имеется по два металлических кольца, которые формируют необходимые для функционирования этого ДВС камеры сгорания.

Важной составляющей ротора является зубчатое колесо, расположенное в его центре и сопрягаемое с закрепленной на корпусе шестерней. Именно благодаря такому сопряжению задается необходимая траектория и направление, по которым ротор вращается в корпусе.

Ротор имеет три выпуклых стороны, каждая из которых выполняет роль поршня. Каждая сторона ротора имеет углубление, что повышает скорость вращения ротора, предоставляя больше пространства для топливовоздушной смеси.
На вершине каждой грани расположена металлическая пластина, которая разделяет пространство на камеры. Два металлических кольца на каждой стороне ротора формируют стенки этих камер.
В центре ротора расположено зубчатое колесо с внутренним расположением зубьев. Оно сопрягается с шестерней, закрепленной на корпусе. Такое сопряжение задает траекторию и направление вращения ротора в корпусе.

Корпус роторного двигателя внутреннего сгорания имеет овальную форму, которая рассчитана и реализована таким образом, чтобы с его внутренними стенками всегда соприкасались все три вершины ротора. Это необходимо для того, чтобы в любой момент времени внутри этого силового агрегата присутствовали три полностью изолированных друг от друга объема газа. Кроме того, в корпусе располагаются порты впуска и выпуска, причем в них нет клапанов: впускной порт соединяется непосредственно с дросселем, а выпускной — непосредственно с выхлопной системой.

Корпус имеет овальную форму (форму эпитрохоиды, если быть точным). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три изолированных объемах газа.
В каждой части корпуса происходит один из процессов внутреннего сгорания. Пространство корпуса разделено для четырех тактов:

  • Впуск
  • Сжатие
  • Рабочий такт
  • Выпуск

Порты впуска и выпуска расположены в корпусе. В портах отсутствуют клапаны. Выпускной порт непосредственно соединен с выхлопной системой, а впускной порт — с дросселем.

Выходной вал роторного двигателя совсем не похож на коленчатый вал поршневого ДВС. На нем эксцентрично, то есть с некоторым смещением относительно центральной оси располагаются специальные выступы. С каждым из них сопряжен отдельный ротор (их, кстати говоря, в роторном двигателе располагается не один, а несколько). При вращении каждый из роторов толкает «свой» кулачок, в результате чего на валу появляется крутящий момент.

Следует заметить, что все роторные двигатели собираются слоями. У наиболее часто используемых двухроторных их пять, а удерживаются все он при помощи болтов, установленных по кругу. Охлаждение роторных двигателей осуществляется с помощью охлаждающей жидкости, которая походит через все части конструкции. Подшипники и уплотнения для выходного вала располагаются в двух крайних слоях. Они же разделяют между собой части корпуса, в которых располагаются сами роторы. Впускные порты располагаются в центральной части, а выпускные — в каждой из крайних частей.

Схема устройства РПД

В конструкцию РПД входят следующие элементы:

  1. Ротор с 3 выпуклыми гранями, выполняющими функции поршня. За счет углублений увеличивается скорость вращения, образуется больше пространства для воздушно-топливной смеси.
  2. Пластины из металла, закрепленные на вершинах каждой из сторон. Их предназначение – формирование полостей в корпусе, где происходят рабочие процессы силовой установки.
  3. 2 металлических кольца на гранях ротора служат для образования камерных стенок.
  4. В центре конструкции располагаются 2 больших колеса с большим количеством зубьев, вращающихся вокруг шестерней меньшего диаметра. Зубчатая передача соединена с приводным устройством, закрепленном на выходном валу. Направление и траектория движения внутри камеры зависят от этого соединения.
  5. Корпус ротора. Изготавливается в форме условного овала. Такая конфигурация обеспечивает постоянный контакт вершин треугольника со стенками капсулы, создавая 3 изолированных объема газа.
  6. Окна впрыска и выхлопа. Клапанов не имеют. Впускное отверстие соединено с системой подачи топлива, а выпускное – с выхлопной трубой.
  7. Выходной вал с эксцентриковой конструкцией. На нем расположены особые кулачки, смещенные относительно осевой линии. На каждый из этих выступов надевается отдельный ротор. Благодаря несимметричной установке, происходит неравномерное распределение силы давления. Это приводит к образованию крутящего момента, вызывающего стабильную работу силовой установки, основанную на оборотах вала.

5 основных слоев, скрепленных по окружности длинными шурупами, составляют стандартную конструкцию двухроторного двигателя. При этом создаются условия для свободной циркуляции охлаждающей жидкости внутри системы. Движущиеся части, представленные 2 роторами и эксцентриковым выходным валом, располагаются между 2 стационарными участками.

Принцип работы роторного двигателя

Принцип работы роторного двигателя
Так же, как и в поршневом, в роторном двигателе используется давление газов, образующихся в результате сгорания топливно-воздушной смеси. Однако оно возникает не в цилиндрах, а в камере, которая образуется той частью корпуса, которая закрыта стороной находящегося внутри нее треугольного ротора. Именно он и используется вместо поршней.

Вращение ротора под воздействием этого давления происходит по траектории, очень напоминающей линию, нарисованную спирографом. Благодаря этому все три вершины треугольного ротора при соприкосновении со внутренними стенками корпуса двигателя образуют герметичные камеры сгорания. По мере вращения ротора каждый из трех этих объемов попеременно то расширяется, то сжимается. Такой режим функционирования роторного ДВС обеспечивает осуществление таких процессов, как:

  • Поступление топливно-воздушной смеси;
  • Сжатие;
  • Полезную работу;
  • Выпуск выхлопа.

Таким образом, роторный двигатель точно так же, как и стандартный поршневой двигатель современного автомобиля, является четырехтактным.

Забор топливно-воздушной смеси в роторном двигателе

Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт.
Сжатие топливно-воздушной смеси в роторном двигателе
Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.

Сжигание топливно-воздушной смеси

Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси.
В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.

Выброс отработавших выхлопных газов

Как только ротор одной из своих вершин пересекает границу выпускного отверстия, начинается выброс выхлопных газов. Ротор по инерции, а также посредством второго ротора, работающего асинхронно, продолжает менять свой угол и перемещается вершиной до впускного отверстия. Здесь все происходит заново от такта забора до такта выброса.

Мощность и рабочий такт

В центральной части расположен впускной порт для каждого ротора Как и поршневые двигатели, в роторном двигателе внутреннего сгорания используется четырехтактный цикл. Но в роторном двигателе такой цикл осуществляется иначе.
За один полный оборот ротора эксцентриковый вал выполняет три оборота.
Основным элементом роторного двигателя является ротор. Он выступает в роли поршней в обычном поршневом двигателе. Ротор установлен на большом круглом кулачке выходного вала. Кулачок смещен относительно центральной оси вала и выступает в роли коленчатой рукояти, позволяя ротору вращать вал. Вращаясь внутри корпуса, ротор толкает кулачок по окружности, поворачивая его три раза за один полный оборот ротора.
Размер камер, образованных ротором, изменяется при его вращении. Такое изменение размера обеспечивает насосное действие. Далее мы рассмотрим каждый из четырех тактов роторного двигателя.

При работе мотора Ванкеля используется стандартный 4–тактный цикл, газораспределение осуществляется кромками ротора. Поступающий поток имеет сниженную турбулентность, что приводит к неравномерному сгоранию смеси и выбросу части топлива с потоком отработавших газов. За один рабочий цикл ротора соединенный с ним эксцентриковый вал выполнит 3 оборота.

При вращении происходит изменение объема камер, что позволяет отказаться от установки клапанного механизма с принудительным приводом.

Преимущества и недостатки роторных двигателей

Основными преимуществами роторных двигателей по сравнению с поршневыми являются:

  • Меньшее количество движущихся деталей;
  • Более плавная работа;
  • Более высокая надежность.

В двухроторном двигателе движется только выходной вал и оба ротора, в то время, как даже в самом простом по конструкции поршневом ДВС движущихся деталей насчитывается не менее сорока. Соответственно, надежность роторного силового агрегаты оказывается существенно более высокой.

В роторных двигателях все движущиеся части вращаются только в одном направлении, что значительно уменьшает вибрации. Для эффективного гашения тех, которые все же возникают, используются противовесы. Следует также отметить, что вращение ротора в роторном двигателе составляет лишь треть от скорости вращения вала. Это также положительно сказывается на надежности силового агрегата.

У роторных двигателей есть и несколько существенных недостатков. Пожалуй, главный из них состоит в том, что по сравнению с поршневыми ДВС они расходуют существенно больше топлива. При этом затраты на их производство значительно выше, поэтому на сегодняшний день большими сериями они не выпускаются.

Разновидности роторного двигателя

Кроме схемы Ванкеля существуют и другие виды роторных агрегатов. Например, роторно–лопастной двигатель был создан в начале XX века, первый рабочий вариант собрала группа разработчиков под руководством О.М. Иванова. Был проведен расчет прочности элементов, но сложности с созданием надежного уплотнения подвижных лопастей решить не удалось и проект был закрыт. Уже в XXI столетии предполагалось использовать подобный мотор на “Ё–Мобиле”, но проект также не получил развития.

Предлагавшийся несколькими конструкторами роторно–волновой двигатель был ориентирован на малую авиацию. Существовали проекты агрегатов внешнего сгорания, в которых вал вращается за счет потока раскаленных газов или пара. Применение роторных паровых агрегатов ограничивается токсичностью выхлопа и необходимостью установки в машине котла, работающего под высоким давлением, что снижает безопасность эксплуатации.

Существует роторная альтернатива поршневым дизельным ДВС. В конструкции использован клапанный механизм оригинальной конструкции. Для работы на дизельном топливе требуется высокая степень сжатия, поэтому мотор оснащен системой уплотнений из легированных жаростойких сталей. Было создано несколько экспериментальных моделей, не дошедших до конвейерной сборки из–за сложности конструкции и недостаточного ресурса. По мере износа уплотнителей двигателя снижается давление в камере и ухудшается воспламенение подаваемого форсункой топлива.

Двигатель Ванкеля

Единственная серийная версия РПД оснащена ротором со сложным профилем, вращающимся внутри цилиндра.

Существуют двигатели с одной или несколькими секциями, что позволяет повысить мощность и крутящий момент.

Воспламенение сжатой рабочей смеси осуществляется искровым разрядом, вращающийся ротор обеспечивает впуск свежей порции рабочей смеси и вытеснение отработавших газов в атмосферу.

Цикл двигателя Ванкеля

Но тут Фройде предложил новую концепцию роторного двигателя! В двигателе Ванкеля (DKM) ротор вращался вокруг неподвижного вала вместе с камерой сгорания, чем обеспечивалось отсутствие вибраций. Вальтер решил камеру сгорания зафиксировать, а ротор пусть будет приводить в движение вал, то есть использовать принцип двойственности вращения для роторного двигателя. Такой тип роторного двигателя получил обозначение KKM.

Принцип двойственности вращения сам Ванкель запатентовал в 1954, но он всё-таки использовал принцип DKM. Надо сказать, что Ванкелю идея такой инверсии не нравилась, но он ничего не мог поделать – у двигателя его любимого типа DKM обслуживание было трудоёмким, чтобы сменить свечи, требовалась разборка мотора. Так что двигатель типа KKM имел гораздо больше перспектив. Его первый образец закрутился 7 июля 1958 года (правда, на нем ещё в роторе стояли свечи, как на DKM). Впоследствии свечи перенесли на корпус двигателя, и он обрёл свой облик, принципиально не менявшийся до наших дней. Теперь по этой схеме устроены все роторные двигатели. Иногда их называют «ванкелями», в честь разработчика.

В таком двигателе роль поршня играет сам ротор. Цилиндром служит статор, имеющий форму эпитрохоиды, и когда уплотнения ротора двигаются по поверхности статора, образуются камеры, в которых происходит процесс сгорания топлива. За один оборот ротора такой процесс происходит трижды, а благодаря сочетанию форм ротора и статора число тактов такое же, как у обычного ДВС: впуск, сжатие, рабочий ход и выпуск. Анимацию работы роторного двигателя можно посмотреть здесь.

У роторного двигателя нет системы газораспределения – за газораспределительный механизм работает ротор. Он сам открывает и закрывает окна в нужный момент. Еще ему не нужны балансирные валы, двухсекционный двигатель по уровню вибраций можно сравнить с многоцилиндровыми ДВС. Так что идея роторного двигателя в конце пятидесятых казалась ступенькой для автомобилестроения в светлое будущее.

Мотор Желтышева

В конструкции 5–тактного мотора использованы неподвижный кулачок и поворотные лопасти, закрепленные на вращающейся оси. Изменение положения заслонок происходит за счет направляющих, скользящих по поверхности кулачка. Была создана компьютерная модель, опытный образец не собирался из–за отсутствия финансирования.

Двигатель Зуева

Конструкция Зуева предусматривает установку звездообразной поршневой группы. При работе двигателя вращается корпус с золотниковыми клапанами для обеспечения газораспределение и коленчатый вал, который используется для привода коробки передач или иного механизма. В конструкции привода золотникового диска использован планетарный редуктор, на внешней части корпуса выполнены ребра для охлаждения. За каждый оборот агрегат с 5 цилиндрами дает 4 рабочих хода, серийно мотор не производился.

Машины с роторным двигателем

В разработке усовершенствованных концепций силового агрегата с базовым элементом конструкции в виде подвижного ротора участвовали и российские конструкторы, включая Зуева, Желтышева, ингушских изобретателей братьев Ахриевых.

Игнорируя инновации, на автомобили по-прежнему устанавливают двигатели Ванкеля.

В число моделей с РПД входят:

  1. Мазда RX-8. Конструкторское бюро японского концерна достигло прогресса в усовершенствовании. Их последняя разработка вместимостью 1,3 л развивает мощность 215 л.с. Более поздняя версия с аналогичным объемом выдает 231 л.с. Производство прекращено с августа 2011 г. в результате снижения спроса.
  2. ВАЗ 2109-90. Такими машинами пользовались в служебных целях сотрудники российских правоохранительных органов. Милицейские автомобили за 8 секунд могли разогнаться до 100 км/ч и развивали скорость 200 км/ч, легко догоняя преступников. Производились и агрегаты с большей мощностью. Но большая цена и малый ресурс не позволили прижиться РПД, и полицейским пришлось пересесть на транспортные средства с поршневыми моторами.
  3. Мерседес С-111. Впервые был представлен автолюбителям на женевском автосалоне в 1970 г. Спортивный автомобиль оснащался трехкамерным двигателем Ванкеля. Максимальная скорость составляла 275 км/ч. На разгон до первой сотни уходило 5 секунд.
  4. ВАЗ 21019 Аркан. Модель также закупалась для нужд МВД. Советских милиционеров на таких машинах догнать было невозможно и, тем более, уйти от погони. Большинство преследований завершалось поимкой преступников. Объяснение тому – способность служебного транспорта развивать предельную скорость 160 км/ч. Трехсекционный мотор в 1,3 л выдавал 120 л.с.

Почему роторные двигатели не пользуются спросом

Парадокс роторного двигателя заключается в том, что при всей простоте конструкции он не столь востребован, как двигатель внутреннего сгорания, имеющий весьма сложные конструктивные особенности и сложности при осуществлении ремонтных работ.

Разумеется, роторный двигатель не лишен недостатков, иначе он бы нашел широкое применение в современном автопроме, а возможно мы бы и не узнали про существование ДВС, ведь роторный был сконструирован значительно раньше. Так зачем же так усложнять конструкцию, попытаемся разобраться.

Явными недочетами роторного мотора можно считать отсутствие надежной герметизации в камере сгорания. Это легко объяснить конструктивными особенностями и условиями работы мотора. В ходе интенсивного трения ротора со стенками цилиндра происходит неравномерный нагрев корпуса и, как следствие, металл корпуса расширяется от нагрева лишь частично, что и приводит к выраженным нарушениям герметизации корпуса.

Для усиления герметичных свойств, особенно при условии выраженной разницы температурных режимов между камерой и системой впуска или выпуска, сам цилиндр изготавливают из разных металлов и размещают их в разных частях цилиндра, для улучшения герметичности.

Для запуска мотора используют всего две свечи, это связано с конструктивными особенностями мотора, позволяющими выдавать на 20% больше КПД, в сравнении с двигателем внутреннего сгорания, за одинаковый промежуток времени.

Перспективы роторных двигателей

Основные перспективы роторных двигателей связаны с переходом на водородное топливо. Во-первых сразу решается проблема экологичности, а во-вторых, роторные двигатели практически не подвержены детонации при работе с этим видом топлива.

Советы и рекомендации

Обслуживание роторного двигателя

Прежде всего, роторный двигатель необходимо «кормить» только качественным высокооктановым бензином (не ниже АИ-98). Только качественное топливо позволяет избежать детонации, а также замедляет процесс накопления нагара на электродах свечей зажигания.

Еще следует помнить, что этот мотор предельно чувствителен не только к качеству, но и типу масла. Например, не рекомендуется лить синтетику, так как быстро скапливается нагар на апексах, компрессия падает. Заливать в такой мотор следует исключительно рекомендуемое самим производителем масло или подходящую по всем допускам «минералку».

Также замену масла нужно производить часто, масло в роторном моторе меняют каждые 4-5 тыс. км.  Еще важно своевременно менять воздушный фильтр двигателя, так как его загрязнение может привести к закоксовке масляных форсунок системы смазки. Что касается свечей зажигания, лучше производить их замену каждые 10-15 тыс. км.

  • Как правило, основным признаком проблем роторного мотора является потеря компрессии, которая проявляется в затрудненном холодном пуске. Далее неполадки прогрессируют, мотор начинает плохо заводиться как на «холодную», так и на «горячую». Обычно в таком случае очевиден износ апексов, скопление отложений на электродах свечей зажигания и т.д.

В подобной ситуации необходимо срочно отправляться на диагностику к специалистам по ремонту ДВС данного типа. На практике, хотя ремонт сложный и дорогой, в последнее время  в СНГ появилось  несколько центров, специализирующихся на дефектовке и ремонте роторного двигателя  с гарантией.

Как правило, в рамках ремонта выполняется замена статоров, уплотнений роторов, самих роторов и т.д. Конечно, ремонт не дешевый, но однозначно более доступный по сравнению с покупкой нового силового агрегата.

Напоследок отметим, как и поршневой двигатель, роторный мотор нуждается в прогреве перед поездкой. При этом пока мотор не выйдет на рабочие температуры, нагружать агрегат не следует. При таком подходе, а также в сочетании с качественным бензином и маслом, а также своевременном обслуживании, есть все шансы, что роторный двигатель Mazda RX-8 пройдет без ремонта около 80 или даже 100 тыс. км.

Источники

  • https://AvtoNov.com/%D1%80%D0%BE%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B9-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C-%D0%BF%D1%80%D0%B8%D0%BD%D1%86%D0%B8%D0%BF-%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D1%8B/
  • https://CARHack.ru/rotornyj-dvigatel-vnutrennego-sgoraniya/
  • http://KrutiMotor.ru/rotornyj-dvigatel-ustrojstvo-printsip-raboty-plyusy-i-minusy-rotornogo-dvigatelya/
  • https://remontautomobilya.ru/princip-raboty-rotornogo-dvigatelya-plyusy-i-minusy.html
  • https://zen.yandex.ru/media/halva/rotornyi-dvigatel-princip-raboty-i-tehnika-primeneniia-5ba095896ee05400aa942a3c
  • https://2auto.su/article/tech-voprosy/vse-o-rotornyx-dvigatelyax-vidy-i-princip-raboty/

[свернуть]
Adblock
detector